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Ab s tract  

This paper cons iders  multi-input multi-output d i scre te - t ime feedback 

systems cha rac t e r i zed  by y = G*e and e = u-y. Theorem I shows t h a t  i f  t h e  

1 
closed  loop impulse response H is  s t a b l e  i n  t h e  sense  t h a t  H E R nxn ( p ) ,  

then  c ( z )  = Q ( z )  [d(z)]-' where Q ( z ) ,  B ( z )  are i n  z:xn(p). Theorem I1 gives  

necessary  and s u f f i c i e n t  condi t ions  f o r  H E R1 nxn (p) .  F i n a l l y  Theorem I11 

gives  necessary and s u f f i c i e n t  condi t ions  f o r  s t a b i l i t y  when E ( z )  has  a 

f i n i t e  number of mul t ip l e  poles i n  I z I  2 p :  

t e r m  of t h e  Laurent expansion a t  each of t h e s e  poles  is  s i n g u l a r  is  t r e a t e d  

i n  d e t a i l .  

t h e  case  where t h e  lead ing  
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I Introduction 

This paper considers discrete-time linear time-invariant feedback 

systems with n inputs and n outputs. It is of course closely related to 

the corresponding paper [l] which deals with the continuous-time case. 

In view of the simpler analytic nature of the present problems, some of 

the results are sharper and the proofs use more elementary tools. For 

the convenience of the reader, the present paper is as self-contained as 

possible. 

For the feedback system under consideration, the input u, output y 

and error e are sequences mapping Z 

into Rn. 
(the set of nonnegative integers) + 

The open loop system is of the convolution type so that we 

have 

(2) e = u-y . 
OD 

G is specified by a sequence of real nxn matrices (G.) ; thus (1) is 
1 i=O 

OD 

G e for m = 0,1,2,. .. . We use G to denote =c m-i i’ m equivalent to y - 
i=o . 

the map G: e H G*e. As it will become apparent, there is no loss of 

generality in taking the feedback to be unity as we did in (2). 

We shall repeatedly use the convolution algebra R (p);  f is said to 1 

1 be in R (p) iff 

f = (f f f ...) 0’ 1’ 2’ (3) 
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rn 

where f E f o r  a l l  i and Ifi lp-i  < m .  The product of two elements i 
i=o  m 

f g. and i t  1 
m-i  1 

f ,  g E R (p) is  given by t h e i r  convolution: (f*g), = 

i=o  
1 is  easy t o  show f*g E R (p).  The case p = 1, is handled i n  121. An n 

vec to r  v (nxn matrix A) is  s a i d  t o  be  i n  R (p) (E (p) )  i f f  a l l  i t s  

elements are i n  R (p).  L e t  

1 1 
n nxn 

1 denote t h e  z-transform of f ,  i .e .  i ( z )  = 

1 zi z-i: f belongs t o  the  convolution a lgebra  9. (p) i f f  belongs t o  

i = O  

the a lgebra  R (p) (with pointwise product) .  -1 -1 
Simi lar ly  0 E an(p), 

. . -  

One of the most i n t e r e s t i n g  r e s u l t s  of t h i s  paper is t o  show 

i€ 

t h e  

overwhelming importance of systems descr ibed by (1) and (2) where 

(4) 

-1 w i t h  N, E Rnxn(p). 

Tn theorem I below i t  i s  proved t h a t  once t h e  closed loop impulse response 

This c la s s  has been s tud ied  by M. Vidyasagar [ 4 ] .  

1 H i s  w e l l  def ined ,  then,  i f  H E RnXn(p), i t  follows t h a t  ?; is  of t h e  form 

(4). Theorem I uses an observat ion of  Nasburg and Baker [5] who considered 

s ingle- input  single-output continuous-time systems. 

forward ex tens ion  of a r e s u l t  of [5 ] :  i t  shows t h e  importance of the  sys- 

tems considered by Vidyasagar i n  t h e  sense  t h a t  H E (p )  i f  and only if 

Theorem I1 is a s t r a i g h t -  

nxn 

5; is  of t h e  form ( 4 ) .  

condi t ions  f o r  s t a b i l i t y  of t h e  c losed  loop system when e i s  of t h e  form ( 4 )  

Fina l ly  theorem I11 gives t h e  necessary and s u f f i c i e n t  

w i t h  a f i n i t e  number of poles  i n  I zI 2 p .  This work completely so lves  the  
/ 



problem considered i n  t h e  recent papers  of Desoer, Wu and Lam [2 ,3] .  

11. The Relation Between G and I J .  

W e  s h a l l  use repea ted ly  following l e m a  

Lemma I 

L e t  E a:xn(p), then  i-' E (p )  i f  and only i f  i n f  lde t  i ( z )  I > 0. nxn 
I z l 3  

This  is  easy t o  e s t a b l i s h  by s l i g h t l y  modifying t h e  proof of lemma 2 i n  

r21 

Theorem I 

L e t  G be a sequence of r e a l  nxn matrices { G . }  , For t h e  system def ined  

by (1) and (2) assume t h a t  the closed-loop impulse response e x i s t s  and i s  

uniquely defined by 

OD 

1 
. i = o  

( 5 )  H + G * H = G .  

1 Under t h e s e  condi t ions ,  i f  H E  enxn(p> ,  then  

1 
nxn (a) G is  z-transformable and f o r  some f i n i t e  p ,  G E R (F). 

(b) e i s  of t h e  form 

where @ ( a )  and c ( * )  E i i x n ( p ) .  

(c) can a t  most have a f i n i t e  number of po les  i n  any annulus of t h e  

form p + E - < I z I  - < ;where E > 0 wi th  p + E < p .  
- 
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Comment 

This theorem shows that once the c losed  loop system is well-def ined and 

“ s t ab le” ,  then i s  necessa r i ly  of t h e  form ( 6 ) ,  can a t  most have a f i n i t e  

number of po le s  i n  any annulus of t h e  form p + E 5 I z I 5 p and i s  a n a l y t i c  

f o r  IzI > F. 

m 
Proof 

Note t h a t  H i s  of t h e  form H = (HO,H1.”.) a n d x  l H i l p  
-i < m y  where 1 . 1  

i=o 
denotes any m a t r i x  norm. From (5), Ho + GOHO = G s o  t h a t ,  s i n c e  H i s  0 0 
uniquely def ined ,  det(I+Go) # 0. 

impl ies  t h a t  (I+Go)(I-HO) = I. 

a f i n i t e  

B ( z )  [I-fi(z) I-’, conclusion (a) follows and, using a n a l y t i c  con t inua t ion  

This impl ies  det(1-Ho) # 0 because (5) 

Since G ( z )  -+ Ho a s  121 + m y  t h e r e  e x i s t s  

- > p such t h a t  det[I-fi(z)]  # 0 f o r  IzI > p. Since 6(z) = 

- 
i n t o  t h e  annulus p < I z I  - < p ,  ( 6 )  follows wi th  fi = fi and 6 = I-fi. 

by assumption H E R 

Since  
- - 1 1 

nxn ( p ) ,  N and D E RnXn(p), SO conclusion (c )  fo l lows  e a s i l y  

by c o n t r a d i c t i o n ;  n o t e  t h a t  the elements of b are a n a l y t i c  i n  t h e  compact 

annulus p + E I z I  5;. n 

Remark 

1) 

[I-fi(z)] = I f o r  1.1 > p .  

Observe t h a t  under t h e  conditions of theorem I w e  have [ I&(z ) ]  . 

Thus H and G play  a symmefrical r o l e :  

is  obtained from G by negative feedback of I; 

is  obtained from €J by negative feedback‘ of -I. 

2) A l i t t l e  more can be  s a i d  about t h e  po le s  of ECz): 
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The func t ion  9: z I+ de t [d (z ) ]  is a n a l y t i c  and bounded i n  1.1 > p ;  f u r t h e r -  

more, l i m  d e t [ b ( z ) ]  = d e t  D = det(1-Ho) # 0. Therefore,  by a theorem of 0 IzI- 
[9],  @ has e i t h e r  a f i n i t e  number of zeros i n  I z i  > p ,  o r  else i t  has  an 

QD 

OD 

i n f i n i t e  sequence of them {pi) such t h a t  x ( l - p / l p i l )  < OD. Thus e ( z )  
i-1 i=l 

has e i t h e r  a f i n i t e  number of poles i n  I z l  > p o r  else i t  has an i n f i n i t e  

sequence of them and a l l  accumulation p o i n t s  of t h i s  sequence l i e  on I z I  = p .  

Theorem I1 

L e t  G b e  a sequence of nxn r e a l  matrices which is  z-transformable. For 

the system def ined  by (1) and (2) assume t h a t  t h e  closed-loop t r a n s f e r  

f u n c t i o n  fi is  well-defined for almost a l l  z i n  t h e  domain of convergence 
. 

- 
of G; more p r e c i s e l y ,  

f o r  almost a l l  z i n  t h e  domain of convergence of e (*) .  
d i t i o n s ,  

Under t h e s e  con- 

-1 
i f  and only i f  t h e r e  e x i s t s  g, 6 E Rnxn(p) such that .  

(9 1 e(Z) = f i ( z ) [6 (z ) l - l  

and 

(10) 
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Proof 

Necessi ty  

is equiva len t  t o  G ( z )  = f i ( Z )  [I-fi(z)]-', s o  (9) and (10) fo l low wi th  fi = 6 ,  

By (8), fi(z) is  a n a l y t i c  and bounded i n  I z I  > p .  Equation (7) 

b = 14. 

-1 Suff ic iency  

[ 8 ( ~ ) + 5 ( z > ] - l .  

i1 (p ) .  Therefore G ( z )  E (p) as a product of two f a c t o r s  i n  t h i s  

By assumption fi and fi E 11 (p) and (7) g ives  G ( z )  = g ( z )  nxn 

By lemma I, (10) impl ies  t h a t  t h e  second f a c t o r  is  i n  

nxn n xn 
a lgeh ra .  U 

Remark 

As i n  the continuous-time case: (9) does no t  determine t h e  ordered p a i r  

(@,E) uniquely f o r  a given G.  I n  o rde r  t h a t  condi t ion  (10) depend oiily 

on w e  may, as Vidyasagar, impose on t h e  p a i r  @,d> a no-cancel la t ion 

cond i t ion  [1,4] .  

111. Necessary and S u f f i c i e n t  Conditions f o r  S t a b i l i t y .  

We consider  f i r s t  and i n  de ta i l  t h e  case where has a s i n g l e  po le  

p of o rde r  m i n  IzI ~ p .  

W e  consider  t h e  open loop t r a n s f e r  func t ion  

m-1 

i = O  

-1 where IpI > p > 0 ,  

w i t h  complex c o e f f i c i e n t s .  

( z )  E RnXn(p),  ro = rank R < n and R.  are  nxn mat r ices  

To s t r eaml ine  proofs ,  w e  s tate some prel iminary 

0 0 -  1 - 

facts.  
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Fact 1. L e t  

t hen  i ( l / z )  i s  a polynomial matrix i n  ( l / z )  of degree m. 

-, 

Fac t  2. (Smith Canonical form [ 7 ] ) .  For t h e  nxn polynomial ma t r ix  k ( l / z )  

t h e r e  e x i s t  unimodular ( i . e .  with nonzero cons tan t  determinant) polynomial 

ma t r i ces  i n  ( l / z )  v i z .  P ( l / z )  and G ( l / z ) ,  such t h a t :  

-, .- 
where i )  r = rank of  k ( l / z )  = order  of t h e  l a r g e s t  minor of $ ( l / z )  whose 

determinant  i s  not  equal  t o  the  zero  polynomial; i i )  Z . ( l / z ) ,  j = 1 , 2 ,  ..., r 
are t h e  i n v a r i a n t  polynomials of k ( l / z )  and each polynomial 5.(*) d iv ides  

3 - 
J 

Z (e), j = 1 , 2 ,  ..., r-1; iii) t h e  diagonal  mat r ix  on t h e  R.H.S. of (13) 

can be obtained by elementary opera t ions .  

j +1 

-1 Fact  3.  

verses are polynomial mat r ices  a l s o  i n  R 

The polynomial mat r ices  $ ( l / z )  and G( l /z )  E R ( p )  and t h e i r  in- nxn 
-1 

(p) .  nxn 

Fac t  4 .  

Ro , then  

L e t  5 .  ( e )  j = 1 , 2 , .  ..,r be  as i n  (13) and l e t  ro be  t h e  rank of 
J 
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(b) by t h e  f a c t o r i z a t i o n  of t h e  last  r-r polynomials 0 

where c 

w i t h  

is  t h e  order  of t h e  zero of 2. ( - )  a t  z = p;  6 ( * )  is  a polynomial 
j J j 

Remark 

The c. may b e  l a r g e r  than m ( i n  f a c t  c 

c r eas ing .  

i ndex  set K = { r  +1, r0+2, ..., r} i n t o :  

< rm) and are monotonically in-  
J r -  

Thus the  c . -m’s  may t ake  on any s ign .  Therefore  p a r t i t i o n  the  
J 

0 

We are now ready f o r  theorem 111. 
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Theorem I11 

L e t  6 ( z )  be  given by (11) and let  g ( l / z )  and G(l/z) b e  t h e  polynomial 

ma t r i ces  def ined  i n  (13). Suppose t h a t  t h e  index-sets K , KO, K+, as 

def ined  i n  (17)-(19) are not  empty. 

Consider t h e  p a r t i t i o n i n g  

- 

Q n-a 
A -  

and l e t  6. ( 0 )  be  t h e  polynomiais def ined i n  (15). i h d e r  t h e s e  cond i t ions ,  
J 

if and only i f  

(22) i n f  I d e t [ I d ( z ) ] ]  > 0 
blrp 

and a t  t h e  po le  p t h e  following condi t ion  holds 

((3 d e t  (PI + diag [6a+l U / P )  , . . , 6 e  ( U p )  ,O ,0, . . . ,0] 1 #. 0. 

Proof 

Suf f i c i edcy .  Not. t h  ( 
t (21) is equiva len t  t o  [ ~ + G ( z ) l  -1 E gnxn -1 1, 

by f a c t  3 i s  aga in  equiva len t  t o  {G(l/z) [ I + ~ ( z ) l P ( l / ~ } - ~  E Rnxn(p).  -1 

now as m u l t i p l i e r  

rhich 

Take 
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-I 
=0 a-rO 

1,1,. . . ,11 
w 

n-a 

w i t h  

As i n  t h e  continuous-time case  [ l ] ,  w r i t e  
. I  

{Q(l /z)  [I+C(Z)]P(l/Z) 1-1 = G(z)fi(z)-l  . 
Then using t h e  f a c t s  above, lemma I and ( 2 2 ) - ( 2 4 ) ,  a d e t a i l e d  c a l c u l a t i o n  

shows t h a t ,  as a consequence of ( C ) ,  i ( z )  -1 E -1 Rnxn (p ) ;  s i n c e  G ( z )  is  a l s o  

i n  t h i s  a lgeb ra ,  t h e  claim follows. n 

... -1 Necess i ty .  

(22) follows immediately by [6]. 

By assumption H E Enxn(p). 

To e s t a b l i s h  (C) w e  use con t r ad ic t ion .  W e  show t h a t  i f  t h e  L.H.S. of (C) 

is zero,  then  t h e r e  e x i s t s  an inpu t  u E R (p) which S e s u l t s  i n  an e r r o r  e 

and thus an output  y = u-e which is  not  i n  R ( p ) .  This i s  a c o n t r a d i c t i o n  

2 

n 
2 
n 

2 2 
n nxn n because u E II (p) and H E R1 (p) imply' y = H*u E R (p) (This i s  an  easy 

ex tens ion  of lemma 1 of [ 2 ]  w h e r e  p = 1 has been handled).  The z- t rans-  

forms of e and u are r e l a t e d  by 

-11- 



C25) 1I&(z)]e(z) = ii(2). 

Multiplying (25) on the left  by Q(l/z) and s e t t i n g  

(28) e ( = )  = P(l/z)M(z)e(z) 

w e  obtain 

- (29) N(z)Z(z) = u(2) 

Observe that 

where 

-C 
(31j i ( z )  = d i a g ( l , l , .  . . ,1, S(z) 'Cro+l  ,a(z)  -Cro+l,. . . ,S(z) a y 

- \  Y 

=0 

With 

0 a- r 

-m w - m , a ( z ) - m , .  . . ,9(z) 1.. 
\ v n-a 
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(26) and (11) imply 

( 3 4 )  fi(z) = fi,(z) + Q 2 ( Z ) .  

(35) 

where 

T 

0 r 

6 (l/z) ;6 (l/z) y . . . y6a(l/z) 1 rO+l r0+2 

0 a-r 

a n-a -- 
- -13- 

P 



where 

(40) k21(P) = 0 . 

Furthermore by (36) ,  (14) and (16) 

(41) det fi,(p) # 0 

e 

and by (37), (161, (24) and (19) 

"(C) no t  t rue"  is  equivalent  t o  de t (d  (p) + (p ) )  = 0. 2 22 ( 4 2 )  

. .  
In order  t o  e s t a b l i s h  t h e  cont rad ic t ion ,  using ( 4 2 )  w e  can pick a nonzero 

v e c t o r  rl E Cn-' i n  t h e  n u l l  space of fi2(p) + c,,(p>, thus 

P ick  now the vec tor  6 E Ca such t h a t  

(44) 

which i s  well-defined because o f  (41) and because a l l  elements of (z) 

are members of R ( p ) .  Hence, s e t t i n g  

1 2  
-1 

l (45) 

-14- 
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l -  . 
(29) , ( 3 4 ) ,  ( 3 5 )  and (38) i m p l y  

Observe t h a t  because of  (39)- (40 )  and ( 4 3 ) -  ( 4 4 )  t h e  express ions  between 

the  braces  i n  t h e  R.H.S. of ( 4 6 ) - ( 4 7 )  have a f i r s t  o rde r  zero  a t  p. Hence, 

s i n c e  a l l  elements of t h e  matrices contained i n  t h e s e  expressions belong 

t o  R (p)  , i ( z )  i s  well-behaved and bounded a t  p. -1 These remarks and t h e  

p r o p e r t i e s  of t he  components of ( z )  and (z) imply that Y(z) is  a n a l y t i c  1 2 

f o r  I z I  > p ,  bounded f o r  1.1 - > p, continuous f o r  1.1 = p and as 1.1 + m y  

u(z) -f < The Laurent expansion of Y ( z )  about 
- 

a f i n i t e  cons tan t  vector. 0 

z = 0 ,  [8, Sec. 9.141, reads 

m 

k=O 

us ing  the uniform con t inu i ty  of < i n  t h e  compact annulus p - < I z I  2 p + 1 
w e  o b t a i n  

- -k Observe t h a t  t h e  \p 

on [ - ~ T , R ] .  

k = 0,1,2,. . . are Four r i e r  c o e f f i c i e n t s  o f  < ( p e j e )  

Now, since <(peje) is  bounded and continuous on [-T,T], it  

6 
je 2 

fo l lows  t h a t  i ( p e  ) belongs t o  the Hi lber t space  Ln[-n,r]. Furthermore 

-15- 



jk’ m 2 

* f i  
00 IT 

t h e  set {e Ik=-.. is  an orthonormal H i l b e r t  b a s i s  f o r  L [ - T , I T ] .  Hence 

by Parseva l ’s  equal i ty ,  [8,Sec. 6.51 ,c ITc12p-2k = 2T l i ( p . e j e )  I2d0 < m. 

k=O -IT 

-2  It fol lows t h e r e f o r e  that u (z )  E R ( p ) .  

ii(z) E i t ( p )  o r  

.Furthermore by (27) and f a c t  3 

F i n a l l y  by (45),  (28) ,  (23)-(24) and s i n c e  F ( l / z )  i s  unimodular, E(z) /z  

has  a po le  a t  p wi th  nonzero res idue .  Since lp] 2 p 

El and by (48)-(49) w e  have shown the con t r ad ic t ion  w e  were a f t e r .  

Remarks. 

1) 

are nonempty. 

f i c a t i o n s  of (C) of t h e  m u l t i p l i e r  R ( z )  are s t ra ight forward .  

The theorem above descr ibes  i n  d e t a i l  what happens when K - , Kc)’ K+ 

When one o r  more of these sets are empty t h e  requi red  modi- 

2) I n  case t h e r e  are R po les  a t  p 1’ P2’ ..., p R of o rde r  m 1’ m2, 0 - 0 ,  

m 

m u l t i p l i e r s  l i k e  G(z) one for each pole .  

that d e t  G ( z )  does n o t  vanish  a t  z = p .  

case an appropr i a t e  condi t ion  (C)  is  requi red  a t  each pole .  

w i t h  abso lu t e  va lue  l a r g e r  than o r  equal  t o  p ,  one uses  a product of R 

Condition ( C )  is  used t o  check 

Therefore  f o r  t h e  more gene ra l  

-16- 
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